Math 245C Lecture 9 Notes

Daniel Raban

April 19, 2019

1 The Schwarz Space

1.1 Topology of the Schwarz space

Definition 1.1. Given $N \ge 0$ and $\alpha \in \mathbb{N}^n$ ($\mathbb{N} = \{0, 1, 2, ...\}$), we define the seminorm of $f \in C^{\infty}(\mathbb{R}^n)$

$$||f||_{(N,\alpha)} := \sup_{x} (1+|x|)^{N} |\partial^{\alpha} f(x)|.$$

The Schwarz space is $S = \{ f \in C^{\infty}(\mathbb{R}^n) : \|f\|_{(N,\alpha)} < \infty \ \forall N \in \mathbb{N}, \alpha \in \mathbb{N}^n \}.$

Example 1.1. If $f \in C^{\infty}(\mathbb{R}^n)$ with compact support, then $f \in S$.

Example 1.2. $|\partial^{\alpha}(e^{-|x|^2})| \le c(1+|x|^{2|\alpha|})e^{-|x|^2}.$

 \mathcal{S} is endowed with a topology induced by the seminorm as follows: $(f_k)_k \subseteq \mathcal{S}$ converges to $f \in \mathcal{S}$ iff

$$\lim_{k \to \infty} \|f_k - f\|_{(N,\alpha)} = 0$$

for all $N \in \mathbb{N}$ and $\alpha \in \mathbb{N}^n$. Recall that a Freéchet is a complete, Hausdorff, topological vector space whose topology is induced by a countable family of seminorms.

Proposition 1.1. S is a Fréchet space.

Proof. Hausdorff: Given $f \in S$ and $\varepsilon > 0$, $U_{(N,\alpha)}^{\varepsilon} = \{g \in S : ||f-g||_{(N,\alpha)} < \varepsilon\}$ are the open sets that generate the topology of S. Let $f_1, f_2 \in S$ be distinct. Let $x_0 \in \mathbb{R}^n$ be such that $4\delta := |f_1(x_0) - f_2(x_0)| > 0$. Since $|f_1 - f_2|$ is continuous, there exists an open neighborhood O of x_0 such that $|f_1(x) - f_2(x)| \ge 3\delta$ for all $x \in O$. We have $U_{(0,0)}^{\delta}(f_1) \cap U_{(0,0)}^{\delta}(f_2) = \emptyset$. This proves that S is a Hausdorff space.

Completeness: Let $(f_k)_k \subseteq S$ be a Cauchy sequence: $\lim_{k,\ell\to\infty} ||f_k - f_\ell||_{(N,\alpha)} = 0$ for all $N \in \mathbb{N}, \alpha \in \mathbb{N}^n$. Taking N = 0 for each α , we obtain that $(\partial^{\alpha} f_k)_k$ is a Cauchy sequence for the uniform norm, and so $(\partial^{\alpha} f_k)_k$ converges uniformly to some $g_{\alpha} \in C(\mathbb{R}^n)$. We claim that $\sup_x (1+|x|)^N g_{\alpha}(x) < \infty$. We have $(1|x|)^n |\partial^{\alpha} f_k - \partial^{\alpha} f_\ell| \leq \varepsilon$ for large k, ℓ . Letting $\ell \to \infty$, we get $1|x|)^n |\partial^{\alpha} f_k - g_{\alpha}|$ for large k. Then

$$(1+|x|^N|g_{\alpha}| \leq \underbrace{(1+|x|)^N|g_{\alpha}(x) - \partial^{\alpha}f_k(x)|}_{\leq \varepsilon} + (1+|x|)^N|\partial^{\alpha}f_k(x)| < \infty.$$

It remains to show that $g_0 \in C^{\infty}(\mathbb{R}^n)$ and $\partial^{\alpha} g_0 = g_{\alpha}$. By Taylor's expansion,

$$f_k(x+h) = f_k(x) - \nabla f_k(x)h = \int_0^1 \int_0^1 (\nabla^2 f_k(x+tsh))h \cdot h) \, ds \, dt.$$

Thus,

$$|f_k(x+h) - f_k(x) - h \cdot \nabla f_j(x)| \le \frac{|h|^2}{2}M, \qquad M = \sup_k \sup_{|\alpha|=2} ||f_k||_{(0,\infty)}.$$

Letting $k \to \infty$, we obtain

$$\left| g_0(x+h) - g_0(x) - \sum_{i=1}^n g_{(0,\dots,0,1,0,\dots,0)}(x)h_i \right| \le \frac{M}{2} \|h\|^2.$$

Since $g_{(0,\dots,0,1,0,\dots,0)}(x)$ is continuous, we conclude that g_0 is differentiable at x and that $\frac{\partial}{\partial x_i}g_0(x) = g_{(0,\dots,0,1,0,\dots,0)}(x)$. Increasing the rank of the expansion, we obtain the desired result. So $g_\alpha = \partial^\alpha f$.

1.2 Equivalent characterizations of functions in the Schwarz space

Proposition 1.2. Let $f \in C^{\infty}(\mathbb{R}^n)$. The following are equivalent:

- 1. $f \in S$.
- 2. $x^{\beta}\partial^{\alpha}f$ is bounded for any $\beta, \alpha \in \mathbb{N}^n$.
- 3. $\partial^{\alpha}(x^{\beta}f)$ is bounded for any $\beta, \alpha \in \mathbb{N}^{n}$.

Proof. (1) \implies (2): Let $\alpha, \beta \in \mathbb{N}^n$. Then

$$|x^{\beta}||\partial^{\alpha}f(x)| \le (1+|x|)^{|\beta|}|\partial^{\alpha}f(x)| \le ||f||_{(|\beta|,\alpha)}.$$

(2) \implies (3): We have

$$\partial^{\alpha}(x^{\beta}f) = \sum_{a \in A, b \in B} x^{a} \partial^{b} f,$$

where A and B are finite sets determined by α, β . Thus,

$$|\partial^{\alpha}(x^{\beta}f(x))| \leq \sum_{a \in A, b \in B} \|x^{\alpha}\partial^{b}\beta\| < \infty.$$

(3) \implies (1): We have $\|\partial^{\alpha} f\|_{\infty} < \infty$ for all $\alpha \in \mathbb{N}^{n}$. It remains to show that $\|(1+|x|)^{N}\partial^{\alpha} f(x)\|_{\infty} < \infty$. Fix an integer $N \ge 1$. Then

$$\delta_N := \min\{\sum_{i=1}^n |x_i|^N : ||x|| = 1\} > 0.$$

Hence,

$$\delta_N \le \sum_{i=1}^n \left| \frac{x_i}{\|x\|} \right|^N = \frac{1}{\|x\|^N} \sum_{i=1}^N |x_i|^N.$$

 So

$$||x||^N \le \frac{1}{\delta_N} \sum_{i=1}^n |x_i|^N.$$

It remains to show that $|||x_i|^N \partial^{\alpha} f||_{\infty} < \infty$. We have for N = 1 that

$$\partial_{x_j}(x_i\partial^{\alpha}f) = \delta_{i,j}\partial^{\alpha}f + x_i\partial_{x_j}\partial^{\alpha}f,$$

 \mathbf{SO}

$$\|x_i\partial_{x_j}\partial^{\alpha}f\| \le \|\partial_{x_j}(x_i\partial^{\alpha}f)\|_{\infty} + \|\partial\alpha^{\alpha}f\|_{\infty}^j.$$

Repeat the process for $N = 2, 3, \ldots$